Some results on the polynomial numerical hulls of matrices

Authors

  • A. Salemi Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.
  • H. Afshin Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
  • M. Mehrjoofard Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
Abstract:

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

full text

some results on the polynomial numerical hulls of matrices

in this note we characterize polynomial numerical hulls of matrices $a in m_n$ such that$a^2$ is hermitian. also, we consider normal matrices $a in m_n$ whose $k^{th}$ power are semidefinite. for such matriceswe show that $v^k(a)=sigma(a)$.

full text

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

full text

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

full text

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 39  issue 3

pages  569- 578

publication date 2013-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023